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Abstract 

 

Let T be a triangulated planar graph with a set of vertices, V. We start off with a random 

circle packing by assigning random positive integer values, r to each vertex, v which represent 

radiuses of spheres located at each vertex. We then run a Ricci flow, which calculates curvatures at 

every vertex and slightly adjusts radiuses. Each iteration linearly approximates new set of radiuses 

based on Ricci flow differential equation. Given enough iterations, the algorithm eventually 

produces a constant-curvature circle packing of the initial planar graph. 

 

 

Introduction 

 

 The algorithm is based on the ideas presented in “Combinatorial Ricci Flows on Surfaces” 

by Bennett Chow & Feng Luo (2003). 

Let T be a triangulation in a plane. Let V = {v1, v2, …, vN} be a set of vertices of T. Let ri be a 

randomly assigned positive integer assigned to vi, representing a radius of an initial sphere at vi. Let 

ai be a sum of all interior angles at vi. Let Ki be the curvature at vi, and defined to 2𝜋 − 𝑎𝑖 if vi is 

interior and (1 −
2

𝑁
)𝜋 − 𝑎𝑖 if vi is on a boundary. Then we define Ricci flow as following: 

𝑑𝑟𝑖
𝑑𝑡

= −𝐾𝑖𝑟𝑖 

Given that Ricci flow we can build an algorithm which in a limit would produce constant-

curvature circle packing of a given triangulated planar graph. 

 

 

Ricci Flow 

 

 Ricci flow (also known as Ricci-Hamilton flow) is a geometrical flow that deforms the 

metric of a Riemannian manifold and smoothens out irregularities similarly to the diffusion of heat. 

It was introduced by mathematician, Richard S. Hamilton, and is named after Gregorio Ricci-

Curbastro. Ricci flow was heavily used by Perelman in his solution to Poincaré conjecture. 

Currently the area of work lies in how higher-dimensional Riemannian manifolds evolve under 

Ricci flow. It is also applicable to constructions of Kähler–Einstein metric. 

 

 



 

 

Algorithm 

 

The following code has been written on Java-based programming language, Processing 3. 

The whole code consists of two files: main.pde and vertex.pde.  

In vertex.pde we initialize Vertex class. Each Vertex holds unique identifications such as 

radius r, curvature k, list of neighbour vertices in a counter clockwise order neighbors, location 

vector location, and others. Each vertex is initially assigned with a random positive radius, in this 

case in a (50, 100) range. Adjust( ) method calculates the curvature of a given vertex and then 

linearly adjusts the radius.  

There are three logical parts in main.pde. In the first part, the algorithm initializes the planar 

graph, types of vertices and edges. In the second part, the algorithm runs Ricci flow for a certain 

number of iterations (referred in the code as evolutions). In the third part, the algorithm reconstructs 

a visual image of the circle packing by the given radiuses. Lastly, the image is being produced to the 

screen. 

 

The following is an example of a code for 2-Apollonian triangulated graph. 

 
main.pde 

ArrayList<Vertex> bound_V; // set of bound vertices 
ArrayList<Vertex> inner_V; // set of inner vertices 

ArrayList<Vertex> V;   // set of all vertices 

 

int[][]  E;                         // 2-D matrix of edge connections 

ArrayList<Vertex> line;  // queue of Vertices used in setLocations() 

 

int number_of_bound_v = 3; 

int number_of_v = 7; 

int evolutions = 0; 

 

void setup() { 

  size(800, 800); 

  bound_V = new ArrayList<Vertex>(); // First part of the program 

  inner_V = new ArrayList<Vertex>(); // Preparing to initialize lists 

  V = new ArrayList<Vertex>(); 

  E = new int[number_of_v][number_of_v]; 

   

  E[0] = new int[]{2,6,5,3,0,0,0};    // E[i] is a list of neighbor vertices of v_(i+1) 

  E[1] = new int[]{3,4,6,1,0,0,0};    // listed in the clockwise order 

  E[2] = new int[]{1,5,4,2,0,0,0};    //  

  E[3] = new int[]{2,3,5,7,6,0,0};    // zeroes indicate the end of the list of neighbors 

  E[4] = new int[]{3,1,6,7,4,0,0};    // 

  E[5] = new int[]{1,2,4,7,5,0,0};    // For example line 25 states that 

  E[6] = new int[]{4,5,6,0,0,0,0};    // V7 is connected to V4, V5, and V6 in that order. 

 

  for (int i = 0; i < number_of_v; i++) {  // We fill in the list V with a parameter  

    V.add(new Vertex((i >= number_of_bound_v))); // i >= number_of_bound_v which indicates  

  }                                                // if the vertex is bound or inner  

           

  for (int i = 0; i < number_of_v; i++) { // We are using matrix E to add information 

    int j = 0;                                                      // about neighbors to each vertex 

    while (E[i][j] != 0) { 

      V.get(i).addNeighbor(V.get(E[i][j] - 1)); 

      j++; 



    } 

  } 

 

  for (int i = 0; i < number_of_bound_v; i++) {                          // initializing bound_V 

    bound_V.add(V.get(i));  

  } 

  for (int i = 0; i < number_of_v - number_of_bound_v; i++) {  // initializing inner_V 

    inner_V.add(V.get(number_of_bound_v + i)); 

  } 

} 

 

void draw() { 

  evolutions++;  

  if (evolutions < 300) { // Second part of the program 

    background(0);  // First 300 itterations 

    for (Vertex v : V) { // Going through each vertex 

      v.adjust();  // Running Ricci flow and linearly adjusting radius 

    } 

  } else if (evolutions == 300) {      // Third part of the program 

    line = new ArrayList<Vertex>(); 

    line.add(inner_V.get(0)); 

     

    inner_V.get(0).setLocation(new PVector(0,0));        // Fixing location of the first inner vertex 

    inner_V.get(0).neighbors.get(0).setLocation(           // and its first neighbor as a point of reference 

      new PVector(0, inner_V.get(0).r + inner_V.get(0).neighbors.get(0).r)); 

    setLocations();                                                          // Setting locations of the rest of vertices 

  } else { 

    background(0);                           // Last part of the program 

    translate(width/2, height/2);       // Centering the set of coordinates in the middle of the screen  

    for (Vertex each : V) {               // Drawing vertices 

      each.draw(); 

    } 

  } 

} 

 

void setLocations() {  // Method setLocations() is similar in its structure to 

  PVector local;   // Breadth-first search except the queue is only used 

  ArrayList<Vertex> neighbors; // for inner boundaries  

  int index; 

   

  while (line.size() != 0) {               // While ther are still vertices in the queue 

    Vertex v = line.get(0);                // Take the first one and label it v 

    line.remove(0);                           // Remove it from the list 

    index = v.findIndexOfFixedNeighbor();  // Find a neighbor with fixed coordinates 

    neighbors = v.getNeighbors();                 // Get neighbor list of the vertex v 

     

    local = new PVector(neighbors.get(index).getLocation().x - v.getLocation().x, neighbors.get(index).getLocation().y - 

v.getLocation().y); 

    local.normalize();              // Finds and normalizes the vector pointing to a fixed neighbor, which will be used  

                                              // as a frame of reference for the rest of the neigbors 

    for (int i = index; i < index + neighbors.size(); i++) {      // Running through the list of neighbors starting with the 

fixed one 

      Vertex u = neighbors.get(i % neighbors.size());  // Getting the indices of two neighbors u and w 

      Vertex w = neighbors.get((i + 1) % neighbors.size()); // located next to each other 

      local.rotate(v.innerAngle(u, w));                              // rotating local vector on the angle uvw 

      if (!w.isFixed()) {                                                     // If w is not yet assigned a set of coordinates 

        local.mult(v.r + w.r);                                              // scale the vector so that it would point at the center of w 

        w.setLocation(new PVector(v.getLocation().x + local.x, v.getLocation().y + local.y)); // assign this location to w 

        if (w.isInner()) {           // if w is an inner vertex 



          line.add(w);                // add w to the end of the queue 

        }                                   // repeat the process 

        local.normalize(); 

      } 

    } 

  } 

} 

 

 

vertex.pde 

class Vertex { 

  float r; 

  float K; 

   

  ArrayList<Vertex> neighbors; 

   

  boolean inner = false; 

  boolean fixed = false; 

  PVector location; 

 

  Vertex(boolean a) { 

    r = random(50, 100); 

    neighbors = new ArrayList<Vertex>(); 

    inner = a; 

  } 

 

  void addNeighbor(Vertex u) { 

    neighbors.add(u); 

  } 

   

  ArrayList<Vertex> getNeighbors() { return neighbors; } 

  float getR() { return r; } 

   

  float innerAngle( Vertex u, Vertex w) { 

    float r1 = u.getR(); 

    float r2 = w.getR(); 

    return 2 * asin(sqrt(r1 * r2 / (r + r1) / (r + r2)));  // inner angle uvw 

  } 

 

  void setToInner() { inner = true; } 

  boolean isInner() { return inner; } 

  void setToFixed() { fixed = true; } 

  boolean isFixed() { return fixed; } 

   

  void adjust() { 

    float total_inner_angle = 0; 

    if (inner) { 

      neighbors.add(neighbors.get(0)); // adds the first vertex to the end to simplify the code of the following loop 

      for (int i = 0; i < neighbors.size() - 1 ; i++) { 

        total_inner_angle += innerAngle(neighbors.get(i), neighbors.get(i+1)); 

      } 

      neighbors.remove(neighbors.size() - 1); // removes the first vertex from the end 

      K = 2 * PI - total_inner_angle;               // calculates the curvature 

       

    } else { 

      for (int i = 0; i < neighbors.size() - 1 ; i++) { 

        total_inner_angle += innerAngle(neighbors.get(i), neighbors.get(i+1)); 

      } 



      K = (number_of_bound_v - 2) * PI / number_of_bound_v - total_inner_angle; // calculates the curvature for the 

bound case 

    } 

    float dr = - round(1000 * K * r) / 1000;          // approximates and rounds dr 

    r = r + dr / 100;                                                // lineraly approximates r 

  } 

   

  void setLocation( PVector v ) {  

    location = v;                 // whenever the location is set 

    fixed = true;                 // the vertex becomes fixed 

  } 

   

  PVector getLocation( ) { return location; } 

   

  int findIndexOfFixedNeighbor() {                    // Finds a fixed neighbor which would 

    for (int i = 0; i < neighbors.size(); i++)  {       // serve a point of reference for the rest 

      if (neighbors.get(i).isFixed()) {  

        return i; 

      } 

    } 

    println("Undefined case"); 

    return -1; 

  } 

   

  void draw() {                    // Displays the circle on the screen 

    fill(255,255,255); 

    noStroke(); 

    ellipse(location.x, location.y, r*2, r*2); 

  } 

} 

 

 

Graph Result 
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