

CONSTRUCTION OF CIRCLE PACKING WITH COMBINATORIAL RICCI

FLOW

Ramil Aleskerov

Prof. Bianca Santoro

Abstract

Let T be a triangulated planar graph with a set of vertices, V. We start off with a random

circle packing by assigning random positive integer values, r to each vertex, v which represent

radiuses of spheres located at each vertex. We then run a Ricci flow, which calculates curvatures at

every vertex and slightly adjusts radiuses. Each iteration linearly approximates new set of radiuses

based on Ricci flow differential equation. Given enough iterations, the algorithm eventually

produces a constant-curvature circle packing of the initial planar graph.

Introduction

 The algorithm is based on the ideas presented in “Combinatorial Ricci Flows on Surfaces”

by Bennett Chow & Feng Luo (2003).

Let T be a triangulation in a plane. Let V = {v1, v2, …, vN} be a set of vertices of T. Let ri be a

randomly assigned positive integer assigned to vi, representing a radius of an initial sphere at vi. Let

ai be a sum of all interior angles at vi. Let Ki be the curvature at vi, and defined to 2𝜋 − 𝑎𝑖 if vi is

interior and (1 −
2

𝑁
)𝜋 − 𝑎𝑖 if vi is on a boundary. Then we define Ricci flow as following:

𝑑𝑟𝑖
𝑑𝑡

= −𝐾𝑖𝑟𝑖

Given that Ricci flow we can build an algorithm which in a limit would produce constant-

curvature circle packing of a given triangulated planar graph.

Ricci Flow

 Ricci flow (also known as Ricci-Hamilton flow) is a geometrical flow that deforms the

metric of a Riemannian manifold and smoothens out irregularities similarly to the diffusion of heat.

It was introduced by mathematician, Richard S. Hamilton, and is named after Gregorio Ricci-

Curbastro. Ricci flow was heavily used by Perelman in his solution to Poincaré conjecture.

Currently the area of work lies in how higher-dimensional Riemannian manifolds evolve under

Ricci flow. It is also applicable to constructions of Kähler–Einstein metric.

Algorithm

The following code has been written on Java-based programming language, Processing 3.

The whole code consists of two files: main.pde and vertex.pde.

In vertex.pde we initialize Vertex class. Each Vertex holds unique identifications such as

radius r, curvature k, list of neighbour vertices in a counter clockwise order neighbors, location

vector location, and others. Each vertex is initially assigned with a random positive radius, in this

case in a (50, 100) range. Adjust() method calculates the curvature of a given vertex and then

linearly adjusts the radius.

There are three logical parts in main.pde. In the first part, the algorithm initializes the planar

graph, types of vertices and edges. In the second part, the algorithm runs Ricci flow for a certain

number of iterations (referred in the code as evolutions). In the third part, the algorithm reconstructs

a visual image of the circle packing by the given radiuses. Lastly, the image is being produced to the

screen.

The following is an example of a code for 2-Apollonian triangulated graph.

main.pde

ArrayList<Vertex> bound_V; // set of bound vertices
ArrayList<Vertex> inner_V; // set of inner vertices

ArrayList<Vertex> V; // set of all vertices

int[][] E; // 2-D matrix of edge connections

ArrayList<Vertex> line; // queue of Vertices used in setLocations()

int number_of_bound_v = 3;

int number_of_v = 7;

int evolutions = 0;

void setup() {

 size(800, 800);

 bound_V = new ArrayList<Vertex>(); // First part of the program

 inner_V = new ArrayList<Vertex>(); // Preparing to initialize lists

 V = new ArrayList<Vertex>();

 E = new int[number_of_v][number_of_v];

 E[0] = new int[]{2,6,5,3,0,0,0}; // E[i] is a list of neighbor vertices of v_(i+1)

 E[1] = new int[]{3,4,6,1,0,0,0}; // listed in the clockwise order

 E[2] = new int[]{1,5,4,2,0,0,0}; //

 E[3] = new int[]{2,3,5,7,6,0,0}; // zeroes indicate the end of the list of neighbors

 E[4] = new int[]{3,1,6,7,4,0,0}; //

 E[5] = new int[]{1,2,4,7,5,0,0}; // For example line 25 states that

 E[6] = new int[]{4,5,6,0,0,0,0}; // V7 is connected to V4, V5, and V6 in that order.

 for (int i = 0; i < number_of_v; i++) { // We fill in the list V with a parameter

 V.add(new Vertex((i >= number_of_bound_v))); // i >= number_of_bound_v which indicates

 } // if the vertex is bound or inner

 for (int i = 0; i < number_of_v; i++) { // We are using matrix E to add information

 int j = 0; // about neighbors to each vertex

 while (E[i][j] != 0) {

 V.get(i).addNeighbor(V.get(E[i][j] - 1));

 j++;

 }

 }

 for (int i = 0; i < number_of_bound_v; i++) { // initializing bound_V

 bound_V.add(V.get(i));

 }

 for (int i = 0; i < number_of_v - number_of_bound_v; i++) { // initializing inner_V

 inner_V.add(V.get(number_of_bound_v + i));

 }

}

void draw() {

 evolutions++;

 if (evolutions < 300) { // Second part of the program

 background(0); // First 300 itterations

 for (Vertex v : V) { // Going through each vertex

 v.adjust(); // Running Ricci flow and linearly adjusting radius

 }

 } else if (evolutions == 300) { // Third part of the program

 line = new ArrayList<Vertex>();

 line.add(inner_V.get(0));

 inner_V.get(0).setLocation(new PVector(0,0)); // Fixing location of the first inner vertex

 inner_V.get(0).neighbors.get(0).setLocation(// and its first neighbor as a point of reference

 new PVector(0, inner_V.get(0).r + inner_V.get(0).neighbors.get(0).r));

 setLocations(); // Setting locations of the rest of vertices

 } else {

 background(0); // Last part of the program

 translate(width/2, height/2); // Centering the set of coordinates in the middle of the screen

 for (Vertex each : V) { // Drawing vertices

 each.draw();

 }

 }

}

void setLocations() { // Method setLocations() is similar in its structure to

 PVector local; // Breadth-first search except the queue is only used

 ArrayList<Vertex> neighbors; // for inner boundaries

 int index;

 while (line.size() != 0) { // While ther are still vertices in the queue

 Vertex v = line.get(0); // Take the first one and label it v

 line.remove(0); // Remove it from the list

 index = v.findIndexOfFixedNeighbor(); // Find a neighbor with fixed coordinates

 neighbors = v.getNeighbors(); // Get neighbor list of the vertex v

 local = new PVector(neighbors.get(index).getLocation().x - v.getLocation().x, neighbors.get(index).getLocation().y -

v.getLocation().y);

 local.normalize(); // Finds and normalizes the vector pointing to a fixed neighbor, which will be used

 // as a frame of reference for the rest of the neigbors

 for (int i = index; i < index + neighbors.size(); i++) { // Running through the list of neighbors starting with the

fixed one

 Vertex u = neighbors.get(i % neighbors.size()); // Getting the indices of two neighbors u and w

 Vertex w = neighbors.get((i + 1) % neighbors.size()); // located next to each other

 local.rotate(v.innerAngle(u, w)); // rotating local vector on the angle uvw

 if (!w.isFixed()) { // If w is not yet assigned a set of coordinates

 local.mult(v.r + w.r); // scale the vector so that it would point at the center of w

 w.setLocation(new PVector(v.getLocation().x + local.x, v.getLocation().y + local.y)); // assign this location to w

 if (w.isInner()) { // if w is an inner vertex

 line.add(w); // add w to the end of the queue

 } // repeat the process

 local.normalize();

 }

 }

 }

}

vertex.pde

class Vertex {

 float r;

 float K;

 ArrayList<Vertex> neighbors;

 boolean inner = false;

 boolean fixed = false;

 PVector location;

 Vertex(boolean a) {

 r = random(50, 100);

 neighbors = new ArrayList<Vertex>();

 inner = a;

 }

 void addNeighbor(Vertex u) {

 neighbors.add(u);

 }

 ArrayList<Vertex> getNeighbors() { return neighbors; }

 float getR() { return r; }

 float innerAngle(Vertex u, Vertex w) {

 float r1 = u.getR();

 float r2 = w.getR();

 return 2 * asin(sqrt(r1 * r2 / (r + r1) / (r + r2))); // inner angle uvw

 }

 void setToInner() { inner = true; }

 boolean isInner() { return inner; }

 void setToFixed() { fixed = true; }

 boolean isFixed() { return fixed; }

 void adjust() {

 float total_inner_angle = 0;

 if (inner) {

 neighbors.add(neighbors.get(0)); // adds the first vertex to the end to simplify the code of the following loop

 for (int i = 0; i < neighbors.size() - 1 ; i++) {

 total_inner_angle += innerAngle(neighbors.get(i), neighbors.get(i+1));

 }

 neighbors.remove(neighbors.size() - 1); // removes the first vertex from the end

 K = 2 * PI - total_inner_angle; // calculates the curvature

 } else {

 for (int i = 0; i < neighbors.size() - 1 ; i++) {

 total_inner_angle += innerAngle(neighbors.get(i), neighbors.get(i+1));

 }

 K = (number_of_bound_v - 2) * PI / number_of_bound_v - total_inner_angle; // calculates the curvature for the

bound case

 }

 float dr = - round(1000 * K * r) / 1000; // approximates and rounds dr

 r = r + dr / 100; // lineraly approximates r

 }

 void setLocation(PVector v) {

 location = v; // whenever the location is set

 fixed = true; // the vertex becomes fixed

 }

 PVector getLocation() { return location; }

 int findIndexOfFixedNeighbor() { // Finds a fixed neighbor which would

 for (int i = 0; i < neighbors.size(); i++) { // serve a point of reference for the rest

 if (neighbors.get(i).isFixed()) {

 return i;

 }

 }

 println("Undefined case");

 return -1;

 }

 void draw() { // Displays the circle on the screen

 fill(255,255,255);

 noStroke();

 ellipse(location.x, location.y, r*2, r*2);

 }

}

Graph Result

References

Chow, Bennett, and Feng Luo. “Combinatorial Ricci Flows on Surfaces.” Journal of Differential

Geometry, Lehigh University, projecteuclid.org/euclid.jdg/1080835659.

Colling, Charles R, and Kenneth Stephenson. A circle packing algorithm. Department of

Mathematics, University of Tennessee, 18 Feb. 2002.

Thurston, William (1978–1981), The geometry and topology of 3-manifolds, Princeton lecture

notes.

