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This paper explores the history and the structure of transistors and their uses in circuits. The first
part focuses on the design and underlying physics of both Bipolar Junction (BJT) and Field Effective
(FET) transistor types. We then show how the introduction of transistors revolutionized the world
of electronics by making the creation of logic gates not only possible but relatively cheap. We will
demonstrate transistor circuits for several logic gates (AND, OR, NAND, NOR) thus underlying
their importance, and also show how Boolean algebra can be used as a useful tool that helps to
understand and design transistor circuits.

INTRODUCTION

Transistors

The history of transistors goes back to the early 20th
century. During that time, vacuum tubes were used
to amplify radio signal used in telephony. The device
however was not only fragile but also consumed large
amounts of power. Most importantly, it was unable to
amplify high frequencies.

In 1947, John Bardeen, Walter Brattain and William
Shockley began experimenting with silicon. They dis-
covered that it was comprised of a region favoring pos-
itive current flow and one region favoring negative cur-
rent flow, thus discovering the P-N junction. They later
speculated that by adding a third electrode to the semi-
conductor, they could not only amplify but also control
the amount of current through the silicon. While addi-
tional technical difficulties arose for silicon, they even-
tually achieved an amplification factor of 330 for germa-
nium, which was then used to build the first point-contact
transistor[1].

Logic gates

The history of logic gate goes back to 1924, when
Walther Bothe has invented the ”AND” gate in order
to measure coincidences for electrons in Compton scat-
tering. He used two point discharge counters and then
recorded the coincidences on a moving photographic film
with a time resolution of 1 millisecond [2]. It was a first
example of an ”AND” coincidence circuit, for which he
shared a Nobel prize.

From 1934-1937, Akira Nakashima and Claude E.
Shannon showed how switching circuits could be used
to replicate Boolean algebra[3]. These methods are now
widely used in MOS logic, which uses MOSFET type
transistors.

THEORY

A transistor is a semiconducting device used to amplify
an input signal, producing an output signal larger than
the input signal by some factor, β. In this lab we are go-
ing to examine the two major types of transistors: Bipo-
lar junction transistors (BJT) and Field effective transis-
tors (FET). BJT transistors control the current with a
current, while FET transistors control the current with
a voltage.

BJT transistors are of two types: pnp and npn. Fo-
cusing on the npn type, it has three terminals: collector,
C, base, B and emitter, E as shown in Fig. 1.

FIG. 1. Schematic symbols for npn and pnp transistors.

The structure of the npn transistor can be better seen
from Fig. 2.

When the voltage, VB > VE is applied, emitter and
base act as a diode with current IB . Therefore electrons
of the n++ region would move to and fill the holes in
the p region. Because the p-doped part of the transistor
is narrow, most of these electrons will then move to the
n+ region due to the positive potential VC which forces
electrons from n+ region to move. Thus we get a current
passing through the transistor. We define the amplifica-
tion constant of the transistor as the ratio β = IC/IB ,
which, generally speaking, is an unreliable parameter
since it varies with currents and applied voltages. We
can also notice that VB ≈ VE + 0.6V due to the pn++
region acting as a diode [4, p. 31].

The second important type of transistors are Field ef-
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FIG. 2. Diagram breaking down voltage drops and currents
over the npn transistor. When VBE = VB −VE > 0, a current
cause the holes of the p region shift to n++, and due to the
small size of p region electrons can now freely move from
emitter to collector.

fect transistors (FET). Each FET can be either n or p
channel, be in a depletion or enhancement mode, and
be either of Metal-Oxid-Semiconductor (MOSFET) or
Junction FET (JFET) type (only 5 of 8 combinations
are possible). The difference in channels (n or p) or
modes (depletion or enhancement) just reverses the signs
in equations or change the operation point and thus do
not produce interesting physics. However, MOSFET and
JFET do differentiate in their structure.

Let us consider JFETs. Unlike BJT, a FET controls
the passing current with the voltage, or electric field more
specifically. By applying a small voltage at the gate, we
are able to manipulate the depletion region as to make
in either narrower or wider and thus control the current
(Fig. 3). One side effect of such structure is the fact
that JFET can only be produced in a depletion mode,
meaning that a zero input voltage corresponds to the
ON mode.

FIG. 3. Diagram showing the internal structure of JFET
transistor. As the voltage applied to the base (sometimes la-
beled as gate instead) increases, so does the depletion region,
which leaves less region in the n-region for the current to pass
through cause the decrease in the current (and vice versa).

MOSFET works on a similar principle (Fig. 4). When
VGS > 0, the holes close to gate are repelled. When
VGS > VTH the voltage VDS can now drive the cur-
rent. The current voltage dependence is approximately

TABLE I. AND gate Boolean logic representation

input A input B output
0 0 0
1 0 0
0 1 0
1 1 1

linear for small VDS and then is flat, saturated for larger
VDS . Unlike JFET, one advantage of MOSFET is that
due to the layer of Metal oxide, a MOSFET’s impedance
(1014Ω) is much higher than JFET’s (109Ω) [4, Chapter
3]. Further, it can be produced in both modes, which is
why it’s generally more popular.

FIG. 4. Internal structure of MOSFET transistor.

APPLICATION

Now that we are familiar with the general structure of
a transistor, we will show how they can be used to build
logic gates. One of the key reasons why logic can now be
easily implemented is because transistor can be thought
of as an active circuit component that allows current to
pass only given the proper base signal.

In order to organize the further analysis, we will use
Boolean logic tables. A Boolean logic table is simply
a way to iterate through all possible digital inputs and
correspond them with the wanted binary outputs.

A circuit to study is the AND gate circuit. We know
that since transistors allow current only given the proper
base signal, putting two transistors in series will pass
current only if both inputs meet the threshold (Fig. 5).

We can write the corresponding truth table as in Table
I. In our case it’s pretty simple since the output should be
non-zero only if both inputs are non-zero. This is why we
denote such operation as multiplication, Output = AB.

The next simplest logical circuit is an OR gate. We
want the current to pass if at least one of the gates is
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FIG. 5. Diagram showing the circuit representation of an
AND gate. A and B are the input signals passed into the
base of a transistor. The current will pass through both if
and only if both channels have a proper base signal (ex. exceed
threshold voltage).

true (the boolean term for 1). Therefore it makes sense
to place them in parallel as shown in Fig. 6, with truth
values shown in Table II.

FIG. 6. Diagram showing the circuit representation of a OR
gate. A and B are the input signals passed into the base of a
transistor. The current will pass through both if and only if
at least one of the inputs is at (or above) threshold voltage

TABLE II. OR gate Boolean logic representation

input A input B output
0 0 0
1 0 1
0 1 1
1 1 1

Following the analogous procedure other logical gates
were designed (NAND, NOR, XOR) and frequently the
design was in large guided by manipulations of some of
the simpler gates.

An interesting question one could ask if it’s possible
to construct all possible logic gates just out of one. In
turns out it is possible, and in fact there are two such
commonly used gates: NOR and NAND (the negation of
OR/AND) [5, p. 500].

In order to prove this theorem (we will prove for NAND
since the proof for NOR is analogous) we will use another
commonly used algebraic notations for logic gates, which
are derived from their logic tables shown on Table III.

TABLE III. Logic gates - Algebraic representation

Gate Algebraic representation B
OR A + B

AND A×B
Negation A
NAND A×B
XOR A⊕B
NOR A + B

Finally, we will use Morgan’s Theorem to simplify some
operations, which states that

A×B = A+B (1)

A+B = A×B (2)

First thing to show is the negation, which is quiet sim-
ple since

NAND(A,A) = A×A = A

Therefore negation is ”NAND-complete”. Therefore
AND which is a negation of NAND is also ”NAND-
complete”.

In order to construct OR (and therefore NOR) we will
use first Morgan’s relation for two negated input chan-
nels, Ā, B̄.

Ā× B̄ = ¯̄A+ ¯̄B = A+B

The most difficult is the construction of XOR (exclu-
sive OR). One can refer to Table IV for the Boolean
truth-table.
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TABLE IV. XOR gate Boolean logic representation

input A input B output
0 0 0
1 0 1
0 1 1
1 1 0

After looking at the table, a brute force way to ap-
proach XOR is to represent it using other gates:

A⊕B = A× B̄ + Ā×B

Since all of the used operations can be represented
solely with NAND, the XOR itself can be represented
with NAND, making NAND universal.

CONCLUSION

In this paper we discussed the historical development
of transistors, described the structures of both FET and
BJT type transistors, and then showed how their inven-
tion allowed for an efficient implementation of Boolean
logic, which now is in the foundation of any modern com-
puter.
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