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Voronoi Diagram 

 

 Mathematicians are simply great pattern seekers. We look around, we observe, we 

generalize, we deduce. What Mathematics has always been is a way to bring more harmony into 

one’s life. To an outsider, however, math usually doesn’t mean much. The phrase, ‘I’m just not 

good at math,’ became more of a cliché to most people. Nevertheless, they should not carry the 

blame for being so misguided. The problem lies much deeper - in the institution that claims so 

loudly to teach a subject, which should not be taught, but should rather be discovered. The 

institution prioritizes what it thinks is useful, as opposed to things that bring excitement and joy. 

This paper aims to bring you on a journey and help you connect the dots between the things you 

have already observed yourself.  

  Concepts in math which are the most beautiful are the ones that are extremely simple, yet 

hidden from the common eye. The discovery of such concept is usually followed up by almost a 

barbaric roar, “Eureka!” Before I give an explicit definition of the topic of this paper, I want you 

to rather discover it for yourself.  
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Discovery 

 Look closely at 4 images shown below: a giraffe, a leaf, a dragonfly and a sand formation. 

After looking at them long enough it is hard not to admit that there is something uniting all 4 of 

them, some underlying principle. One can almost say that they are using the same set of formulas 

to achieve these different and unique, yet similar patterns. What is difficult, however, is to find 

this set of formulas, to prove that they are, in fact, connected. However, there are still some things 

one could deduce. Assuming that they are connected, one can theorize that the governing rule 

should not be overly complicated. Also, based on its appearance in living creatures (first 3 images), 

given our knowledge about evolutionary biology, it should be the case that the rule is not arbitrary, 

but rather has some usefulness. Lastly, we can also theorize that a mathematical model could in 

fact be applied, since sand formations are guided by simple physical laws.  
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History 

 In order to understand how Voronoi Diagram was 

discovered, we should understand the set of interests and 

challenges encountered by the people of the past. The very 

first instance of Voronoi Diagram in literature can be 

found in "Principia Philosophiae" by R. Descartes, 1644. 

Being the religious man he was, he came up with an 

interesting hypothetical. Descartes imagined the universe 

to be a two-dimensional plane split into many different 

heavens. He drew several planets and then assumed that 

each planet has a heaven of its own. You might ask why? 

It really is not clear, but he might have been wondering which heaven he would be going to if he 

were to die while space travelling. The justification of this hypothetical is not that important, what 

is important is the conclusion he arrived to. It only makes sense to go to the heaven of the planet 

closest to the place of his death. It is obvious that if he was travelling next to the Earth, he should 

go to Earth’s heaven, and if he was travelling next to Jupiter, he should go Jupiter’s heaven, and 

so on. However, it becomes less clear if he was travelling somewhere in between many different 

planets. Thus, Descartes drew the above diagram showing the approximation of how the universe 

should be split given some arbitrary placed planets, which on the diagram are named as: S, L, C, 

K, O, and so on. There are some interesting details on his diagram. First, we see several circles 

and curvy edges. Famously, circle is a construction which helps find set of points equidistant from 

a given point, and since we are dealing with distances, it makes sense to include them into the 

diagram in some way (we will later show that while Descartes use of circles was incorrect, they 

still show up in a different form). We can also notice that while he correctly split most of the 

universe, there are some problematic regions in the corners, thus his method is a heuristic rather 

than an algorithm. 
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 Moving away from hypotheticals, Voronoi Diagrams have very useful applications. One 

of the most notable early applicable appearances can be found in the work, “On chloroform and 

other anaesthetics : their action and administration” by John 

Snow. In 1854, a severe outbreak of cholera occurred on the 

streets of London, which was a part of a bigger 1846-1860 

worldwide cholera pandemic. At the time, the cause of the 

infection was unknown. Luckily, a British physician, John 

Snow was ready to tackle the problem. He mapped out the 

deaths that occurred in 40 Broad Street as shown in the figure (one solid rectangle per death per 

household). John then noticed that a lot of the deaths very clustered in certain regions. He 

hypothesized the cause to have something to do with water, which lead him to also plotting water 

pumps of the region. John assigned to each region a water pump closest to it, since that’s where 

most likely people would go to get their water supply. Result was astonishing, deaths nearly 

perfectly felt into the region of the Broad Street pump. He then used chlorine to clean the water, 

thus ending the outbreak. Nowadays, John Snow is known as the father of the epidemiology, an 

area of medicine which deals with the spreads and controls of diseases. 

 One can notice some interesting properties of his diagram. Unlike Descartes’, Snow’s 

diagram does not seem smooth. We see a lot of sharp corners, which require an explanation. What 

differentiates this problem from the last one is the our working space and the metric. Since we are 

dealing with distances, we have to double check the definitions. A distance between two points in 

the city is not the length of a straight line, because unfortunately, we cannot walk through the 

buildings. The distance we are looking for is similar to the Manhattan distance, since each path 

must go through streets and avenues. The reason why it is not exactly Manhattan distance is 

because we do not have a perfect city grid, which is why John had to manually find borderlines of 

each region, as there weren’t any simple shortcuts.  
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Mathematics 

 There were two main contributors to the theory of Voronoi Diagrams. In 1850, a German 

mathematician Peter Gustav Lejeune Dirichlet used Voronoi Diagram in his studies of quadratic 

forms. In 1908, Russian mathematician Georgy Fedosievych Voronoi (from whom the diagram 

got its name) generalized and studied the problem in the n-dimensional case. 

 Let’s now formally define the diagram. Let X be a metric space (which usually is a plane 

with a Euclidean metric like in the case with planets) and let 𝑃 =  {𝑝1, … , 𝑝𝑛} be a set of n points. 

We need to find a set of n Voronoi cells 𝑅 =  {𝑅1, … , 𝑅𝑛}, where 𝑅𝑘 is a set of points in X for 

which 𝑝𝑘 is the closest point. It might sound overwhelming, but it actually is pretty 

straightforward. Think of the metric space, X as the universe, points as planets and Voronoi cells 

as Descartes’ “heavens.” The problem is - given a 

set of planets, find the shapes of their surrounding 

heavens.  

 An example of such problem can be seen on 

the diagram. We have our set of points, and our job 

is to paint the plane into different regions such that 

if we were to pick a random location we would 

know which point is closest to us based on the color 

of our region.  

 Before proving properties of this diagram, 

notice some details. First, if you were to choose a point on a borderline, it would have several 

closest points (so the soul would need to split). Second, all regions are convex, meaning the 

segment connecting any two points of the same region lies within the same region. Notice also 

that since our plane is infinite, some of the regions (ones on the sides) actually go forever. Finally, 

observe that all edges are straight. This will be true as long as we work with discrete points (but 

will change if generalize the problem to a set of curves, rather than discrete points). 
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 Let’s now consider simple cases. What would a Voronoi Diagram look like for a plane 

(which, with Euclidean metric, will be the default choice of X,) and 𝑛 = 2? Since we only have 2 

points, we need to divide the plane into 2 regions. What is easier to think of are the borderlines of 

the regions. We know that the points on our 

borderline are equally distant from 𝑝1 and 𝑝2. This 

should ring a bell, since it implies that we are 

looking for a perpendicular bisector of the segment 

𝑝1𝑝2. In the diagram, our perpendicular bisector is 

represented by a solid line. We then can see that for any point to the left of the line, the distance 

to 𝑝1 would be shorter than to 𝑝2, and for any point to the right, 𝑝2 would be closer, therefore we 

solved the problem for 𝑛 = 2.  

 It will be useful to introduce two definitions. Let 𝐵(𝑝, 𝑞) denote the perpendicular bisector 

between 𝑝, 𝑞, i.e. 𝐵(𝑝, 𝑞) =  {𝑥 ∈ 𝑅2 | 𝑑𝑖𝑠𝑡(𝑝, 𝑥) = 𝑑𝑖𝑠𝑡(𝑥, 𝑞)}.. Notice that 𝐵(𝑝, 𝑞) =  𝐵(𝑞, 𝑝), 

since it’s a line between two points. Let 𝐻(𝑝, 𝑞) denote the half plane formed by a 𝐵(𝑞, 𝑝) which 

includes 𝑝, i.e. 𝐻(𝑝, 𝑞) = {𝑥 ∈ 𝑅2 | 𝑑𝑖𝑠𝑡(𝑝, 𝑥) < 𝑑𝑖𝑠𝑡(𝑥, 𝑞)}. Notice that, 𝐻(𝑝, 𝑞) ≠ 𝐻(𝑞, 𝑝) 

because first one is the left half plane, and second one is the right half plane.  

Now add a third point 𝑝3. Here is where the 

construction gets interesting. We want to find the 

Voronoi region of 𝑝1, which we denote as 𝑅1.  

 

The trick is to realize that for any point 𝑥 in 𝑅1, 

𝑑𝑖𝑠𝑡(𝑥, 𝑝1) < 𝑑𝑖𝑠𝑡(𝑥, 𝑝2) and 𝑑𝑖𝑠𝑡(𝑥, 𝑝1) < 𝑑𝑖𝑠𝑡(𝑥, 𝑝3), therefore 𝑅1 =  𝐻(𝑝1, 𝑝2) ∩ 𝐻(𝑝1, 𝑝3). 

Similarly, 𝑅2 =  𝐻(𝑝2, 𝑝1) ∩ 𝐻(𝑝2, 𝑝3) and 𝑅3 =  𝐻(𝑝3, 𝑝1) ∩ 𝐻(𝑝3, 𝑝2). In fact, we can 

generalize this approach to any 𝑛. Given 𝑃 =  {𝑝1, … , 𝑝𝑛}, we can find 𝑅𝑘 as: 

𝑅𝑘 = ⋂ 𝐻(𝑝𝑘 , 𝑝𝑖)

𝑝𝑖∈𝑃

𝑝𝑖 ≠𝑝𝑘
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 This is amazing! We now have a theoretical way of finding Voronoi cells. Not only that, 

but we also gained some information about the borderlines, consisting of Voronoi edges and 

Voronoi vertices, which in the previous example were the point O and the 3 rays coming out of it. 

We know that Voronoi edges fully lie in the set 𝐵 consisting of all possible perpendicular bisectors 

of the given set of points. In addition, the set of Voronoi vertices is a subset of all intersections of 

elements in 𝐵. Just based on these simple observation we can deduce certain properties. 

Definition: A subset S is convex if for any two points 𝑝, 𝑞 ∈ 𝑆, the segment 𝑝𝑞 ⊂ 𝑆. 

Lemma 1. Voronoi cells are convex. 

Proof 

Under this definition it is clear that Half-planes are convex. Further, notice that given two convex 

regions 𝐴 and 𝐵, the intersection 𝐴 ∩ 𝐵 is also convex. This is true because 

 ∀𝑝, 𝑞 ∈  𝐴 ∩ 𝐵  we have  𝑝𝑞 ⊂ 𝐴 and 𝑝𝑞 ⊂ 𝐵  therefore 𝑝𝑞 ⊂ 𝐴 ∩ 𝐵 

Thus 𝑅𝑘 = ⋂ 𝐻(𝑝𝑘 , 𝑝𝑖)
𝑝𝑖∈𝑃
𝑝𝑖 ≠𝑝𝑘

, i.e. intersection of finitely many convex half-planes, thus convex. 

Definition: A circle, C is empty with respect to P if it does not contain any of its points 

Definition: A Voronoi circle, 𝐶𝑖𝑗𝑘 is an empty circle passing through points 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘 

Lemma 2. Point v is a Voronoi vertex iff it is the center of a Voronoi circle. 

Intuition 

Looking at the n = 3 case one can observe that point O is equally far from all 3 points because it 

lies on their perpendicular bisectors implying that 𝑑𝑖𝑠𝑡(𝑂, 𝑝1) = 𝑑𝑖𝑠𝑡(𝑂, 𝑝2) = 𝑑𝑖𝑠𝑡(𝑂, 𝑝3). 

Therefore, we can construct a circle at O which would pass through all 3 points. 

Proof 

=> Let v be a vertex and 𝑝1, 𝑝2, 𝑝3, … 𝑝𝑘 be the set of points whose Voronoi cells touch v (usually 

it’s only 3 points, but could be more). We know that d(v, pi) is the same for all pi, thus they all lie 

on the same circle centered at v. On the other hand, any other point from P lies further by definition, 

thus outside the circle, therefore the chosen circle is a Voronoi circle. 
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<= Given a Voronoi circle Cijk we know that the distance from the center, v of the circle is the 

same to at least 3 points 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘, since it’s an empty circle, it is also the shortest distance, 

therefore, v is the Voronoi vertex. 

 

Perspectives 

 We now know some properties of Voronoi diagram. However, it is somewhat troublesome 

to actually construct such a diagram. We have shown that each Voronoi cell can be constructed by 

intersecting n-1 of its half-planes. This method does not seem to be the most optimal one, which 

is why it might be beneficial to get a different perspective.  

By now, we looked at the problem 

form a perspective of a random point in 

space looking around trying to figure out 

the closest “planet”. An example of where 

such vision can be useful can be seen in 

emergency plane landings. What pilots 

always want to know is where is the closest airport located at any time of their flight. It would be 

rather terrifying if such information was not immediately available. It sounds like we need a 

Voronoi diagram of the U.S. with our set of points being all airports. In this case, our algorithm 

seems totally valid, because we would only need to compute Voronoi diagram ones in a while, 

since airports do not move. Well, even with airports, not all of them are available at all times. Each 

has a very tight schedule, has a list of planes getting ready to fly off, and another queue of planes 

waiting to land. Hopefully, this shows some motivation for why we would want to improve our 

methods. 

 Regardless, we can shift our perspective just to see how the same problem can arise in a 

different setting. A different perspective is usually brought by contemporary mathematicians 

W.P.Thurston, L. Paul Chew and others.  
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 Imagine looking at the problem from “planet’s” perspective. As a planet, you know that 

because all other planets are so far, the close atmosphere definitely belongs to your Voronoi cell. 

So goes for any other planet. Next step is to expand your Voronoi cell a little more simultaneously 

with all other planets. And a little more and so on. A the territory once claimed by one planet, 

cannot be claimed by another because the first one got there first. If all planets were expanding 

their Voronoi cell circularly and with the same speed, then eventually we would get our wanted 

Voronoi diagram! Another way to visualize the process is as such: imagine dropping 2 drops of 

different paint at two places on the table. Initially, the table will be clean except for the 2 small 

areas occupied by drops. However, as time would go on, drops would spread circularly in all 

direction eventually painting the whole table. Or imagine a perfectly flat sand surface lying on a 

flat surface with small point wise gates. Imagine then what would happen if the gates were all open 

at the same time. First, the sand right above the gates would fall, then the sand right next to the 

gates and so on causing the chain reaction. Imagining such a process might be challenging, but 

likely you do not have to because you have already seen the result in the very beginning of the 

paper (page 2).  

 Under this new definition, one can imagine constructing Voronoi diagram with a computer 

simulation by locating circles with initial zero radius and a small constant rate of growth. This idea 

of introducing a “flow” comes up frequently in mathematics, which means that one could apply a 

whole new set of tools when solving related problems.  

 This approach is rather interesting. Geologists and meteorologists use Voronoi diagrams 

(which they call Thiessen polygons, named after American meteorologist Alfred H. Thiessen) in 

order to conduct analysis of weather and climate. An interesting scenario that one could think of 

are movements of earth plates and earthquakes. They start off at a point and then gradually expand 

in a way similar to the one we described. One could also think of the interactions of big cyclones, 

which (to a rough approximation) create their own Voronoi diagrams. 
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 One might be wondering is there any other mathematical concept that can be associated 

with Voronoi diagram, and it turns out there is. Georgy Voronoi was a doctoral advisor of Boris 

Delaunay (or Delone). Delaunay’s biography is truly fascinating. His father, Nikolai Borisovich 

Delone was a professor of physics in St. Petersburg University, which gave Boris an excellent 

education. According to many of his teacher, Boris was good not only at STEM fields, but also at 

music and art. Nevertheless, his love for exact fields was higher. At the age of 15, he turned his 

room into a physics laboratory, and even constructed a bronze telescope. Boris also came up with 

a unique proof for Gauss’s reciprocity law. How much more could he do? In university, he 

organized an aeronautic club, and became of the first glider pilots. Boris Delaunay not only was a 

great Soviet mathematician, but was also one of the first soviet rock climbers. In 1913, he was 

considered to be in the top 3 best Russian climbers, and later in his life even got a mountain named 

after him. Delaunay has contributed to not only modern geometry, but also to mathematical 

crystallography (study of crystal structures), and Galois theory, a topic on modern algebra. Later 

on, he found the first mathematical Olympiad in USSR, which set the tone for competitive 

mathematics of the Soviet Union, and then spent much of his time teaching (O'Connor, Robertson. 

“Boris Nikolaevich Delone”) 

 Given all that, we will only focus on one of his contributions known as Delaunay 

triangulation, which relates closely to our Voronoi Diagram. Again, let 𝑃 =  {𝑝1, … , 𝑝𝑛} be a set 

of n. We then construct the Voronoi diagram. Notice now that every edge or the diagram lies in 

between two points. We can use this idea to construct a 

mathematical graph. The vertices of this graph are our 

points 𝑃 =  {𝑝1, … , 𝑝𝑛}. Two vertices are connected by 

an edge if there is an edge in the Voronoi diagram 

between them. An example is shown on the figure. We 

notice that the resulting graph is a triangulation, we call 

such a triangulation, a Delaunay triangulation. 
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Definition: Delaunay triangulation of a set of points, P denoted as DT(P) is a triangulation such 

that the circumference of any of its triangles doesn’t include any of its points.  

For example, if we refer to the previous diagram, we can see that for any chosen triangle 

of the triangulation, no other vertex is inside the corresponding circle (ex. green circle). This 

construction might seem strange, but it should ring some bells, because we actually already did 

something similar, i.e. Voronoi circles. 

Analogously, any two points whose Voronoi cells share an edge are connected by a 

Delaunay edge. We will omit the formal proof, which can be found on page 8 of "Notes on Convex 

Sets” by Jean Gallier, but the essential idea is to look at the Voronoi circles and use Lemma 2 to 

show that no two Delaunay edges can intersect, except at vertex. 

In fact, one can prove that the Delaunay triangulation is the dual graph of the Voronoi 

diagram meaning. Duality turns out to be an important mathematical concept. In short, the dual 

graph of a give planar graph G is a graph that has a vertex in each face of the original graph, and 

an edge whenever two faces share an edge. While in general, dual graphs are not unique, the 

Delaunay triangulation is a unique dual graph of a Voronoi diagram (given a small additional 

requirement that no four points are co-circular). 

 

Constructions 

 Now that we discussed the basic definitions and properties of the diagram, we will talk 

about how to practically construct it. 

 First, we can look at the algorithm already discussed earlier, known as the “Naïve” 

algorithm. We can construct each Voronoi cell by intersecting the half-planes. There are several 

problems with it. For one, such an algorithm gives little to no insight into the set of vertices and 

edges. In addition, it takes a very long time to run, since we need to not only compute all possible 

half-planes but to also intersect them for each cell. There are also precision problems that arise 

with it related to the fact that we do not actually look for edges directly. 
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 Second algorithm is known as an “incremental” one. Not only this algorithm is faster and 

more precise, it is also most useful for personal drawing, or “doodling.” This algorithm is 

recursive, meaning we will use the Voronoi diagram for n points, to construct the diagram for n+1 

points (n old points and 1 new point). We are going 

to modify the existing Voronoi diagram for n 

points, denote as Vn. Let’s add the n+1th point (red 

point). We then find the Voronoi cell of the Vn, call 

R1 which includes the new point. Since the new 

point is in the cell, we know that part of the region 

must belong to the new cell, so we draw the 

perpendicular bisector, labeled as 1. This bisector 

intersect the edge of the cell R2, therefore part of its cell also should belong to the new region, so 

we again draw the perpendicular bisector between pn+1 and p2, and so on until we finished the loop 

and come back to region R1. Thus what we did is we only looked at half planes between the new 

point and the closest points. Since each step had to make at each iteration we make at most 

1, 2, .., n comparisons, the overall complexity is on the order of n2 (as opposed to naïve’s n2log n). 

 It turns out that there are algorithms much faster, 

which have a linear complexity O(n log n), such as “Divide 

and Conquer” described in Voronoi Diagrams by Franz and 

Klein. Reader can also refer to images in Algorithms for 

Constructing Voronoi Diagrams by Sacrist´an. Readers 

which are familiar with sorting algorithms will notice that it 

has the same complexity as the most efficient sorts, such as 

for example the quick sort. The idea is very similar, we solve the problem recursively by dividing 

n points into two piles of roughly n/2 points (Left and Right), constructing their Voronoi diagrams 

( V(L) and (V(R) ) and merging them (with B(L,R)).  
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Conclusion and thoughts 

 In the beginning of the paper we looked at the geometric patterns and we looked for 

potential rules that could derive these shapes. Hopefully by now, these constructions became more 

intuitive. For example, such pigmentation in giraffe’s skin might point to the fact the process of 

pigmentation actually relates to discrete point sources which gradually spread, in the same way as 

described by Thurston and Chen. Maybe the reason why dragonfly’s wings look as the do is due 

to the fact that the biology was searching for construction that minimizes distances, similar to how 

John Snow was looking at the regions minimizing walking distances till water towers.  

 The beauty of mathematics comes not from its complexity, but rather from its simplicity, 

and Voronoi diagram is an perfect example of how simple principles rule most complex systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Aleskerov 14 

Works Cited. 

D'Agostino, Susan. “Voronoi Tessellations and Scutoids Are Everywhere.” Scientific American 

Blog Network, 22 Jan. 2019, blogs.scientificamerican.com/observations/voronoi-tessellations-

and-scutoids-are-everywhere/. 

 

Descartes René. Principia Philosophiae. S.n., 1964. 

 

Snow, John. On the Mode of Communication of Cholera. Health Division, United States Agency 

for International Development, 1965. 

 

Gavrilova, Marina L. The 3rd International Symposium on Voronoi Diagrams in Science and 

Engineering 2006: Proceedings: July 2nd-July 5th, 2006, Banff Center, Calgary, Alberta, 

Canada. IEEE Computer Society, 2006. 

 

Gallier, Jean. Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial ...Department of 

Computer and Information Science University of Pennsylvania, 

www.cis.upenn.edu/~jean/combtopol-n.pdf. 

 

Aurenhammer, Franz, and Rolf Klein. Voronoi Diagrams - FernUniversität in Hagen. 

www.pi6.fernuni-hagen.de/downloads/publ/tr198.pdf. 

 

O'Connor, J J, and E F Robertson. “Boris Nikolaevich Delone.” Boris Nikolaevich Delone 

(1890-1980), www-history.mcs.st-and.ac.uk/Biographies/Delone.html. 

 

Sacrist´an, Vera. Algorithms for Constructing Voronoi Diagrams . dccg.upc.edu/people/vera/wp-

content/uploads/2013/06/GeoC-Voronoi-algorithms.pdf. 

 

 

 

 

 

 


